El término número complejo describe la suma de un número real y un número imaginario (que es un múltiplo real de la unidad imaginaria, que se indica con la letra i). Los números complejos se utilizan en todos los campos de las matemáticas, en muchos de la física (y notoriamente en la mecánica cuántica) y en ingeniería, especialmente en la electrónica y las telecomunicaciones, por su utilidad para representar las ondas electromagnéticas y la corriente eléctrica.
Los números complejos son una extensión de los números reales, cumpliéndose que . Los números complejos
representan todas las raíces de los polinomios, a diferencia de los reales.
Los números complejos son la herramienta de trabajo del álgebra ordinaria, llamada álgebra de los números complejos, así como de ramas de las matemáticas puras y aplicadas como variable compleja, aerodinámica y electromagnetismo entre otras de gran importancia.
Los números naturales, enteros, fraccionarios y reales se pueden representar como
puntos de una recta (la recta de los números reales).
Los Números Complejos podemos imaginarlos como puntos de un plano (el plano de los números complejos). En ese plano podemos trazar unos ejes perpendiculares que nos sirvan de referencia para localizar los puntos del plano.
Lo habitual es utilizar las coordenadas del punto (x,y). Cuando representamos un número complejo de esta forma decimos que está en forma cartesiana.
No hay comentarios:
Publicar un comentario